Archive

Archive for January, 2011

Steve Bell on Mervyn King

Despite fears of a double-dip recession, Mervyn King urges the government to continue its economic policy.

Steve Bell 27.01.11

Categories: Cartoons

Prison cell too small for giant Dutch prisoner

Angelo’s agony: Dutch prisoner ‘too big for cell’

Article here:

A prison officer locks a cell (generic image)
The prisoner still has most of his sentence to serve

A Dutch prisoner described by his lawyer as a giant has gone to court over the size of his single cell, arguing that it is inhumanely small.

The prisoner, 2.07m tall (6ft 9in) and 230kg (36st), says he cannot properly sleep or use the toilet.

Prison officials have tried to relieve his discomfort by adding a a 2.15m plank and an extra mattress to his bed.

Named by his lawyer as Angelo MacD., he is asking to complete his two-year sentence for fraud under house arrest.

His lawyer, Bas Martens, told a court in The Hague that his client’s conditions of detention violated the European Convention on Human Rights.

He insisted that MacD. was not trying to get out of serving his time.

“My client just wants to serve a comparable sentence without pain,” Mr Martens told Radio Netherlands.

‘Wedging and crouching’

A diagram of the cell (supplied by Bas Martens)
MacD. barely has room to turn in his cell, sketched here by his lawyer

Speaking to the BBC News website, Mr Martens sought to convey the sheer size of MacD., whose picture was not available.

“He is 2.07m tall and a metre wide and a metre deep,” he said.

“He is not obese. He is a giant. He even walks like a giant, like out of the comic books.”

MacD. began his sentence on 29 September and is not due for release until 12 April 2012.

His cell in a prison in the south-western town of Krimpen aan de IJssel would probably be adequate for most prisoners but for him, the problems start in the doorway, where he must bow his head to pass through.

His bed, which is fixed to the wall, is 77cm wide and 1.96m long, according to a sketch provided by Mr Martens.

This means that his client must sleep on his side.

While the plank and extra mattress supplied by the prison authorities were meant to make him more comfortable, he now has to “sleep with one eye open in case he falls out of bed”, Mr Martens said.

To take a shower, he must first wedge himself into the cubicle, then crouch down under the head.

So tiny and low is his toilet, he complains, that “visits” must be kept to the absolute minimum.

Other alleged problems included a lack of adequate space for family visits and suitable seating in the prison canteen.

Mr Martens pointed out that his client was unable to do prison work for similar reasons, despite this being a requirement of his sentence.

A court ruling on the case is expected early next month.

Categories: News of the moment

14 Rare Colour Photos of the rural farmer during the U.S. Great Depression

Article here:

Even today, many documentary photographers will tell you they are influenced by the works of the Farm Security Administration in the 1930s and 40s. Under the direction of Roy Emerson Stryker, the FSA sent photographers to document the plight of the rural farmer during the Great Depression and the progress of New Deal programs. When the U.S. entered World War II, the photography program continued under the Office of War Information (OWI).

The best-known FSA photographs are in black and white. Less commonly seen are the color photos by FSA and OWI photographers, shot between 1939 and 1945. Below we present a selection from the works Library of Congress, Prints & Photographs Division, FSA-OWI Collection.

 

Photo by Russell Lee. Jack Whinery and his family, homesteaders, Pie Town, New Mexico, 1940.

Photo by Alfred T. Palmer. Carpenter at work on Douglas Dam, Tennessee, a Tennessee Valley Authority project, 1942.

Photo by John Vachon. Boy near Cincinnati, Ohio, 1942 or 1943.

Photo by Marjory Collins. A “camouflage class” at New York University, where men and women are preparing for jobs in the Army or in industry by making models from aerial photographs and work out camouflage schemes, 1943.

Photo by Alfred T. Palmer. Woman machinist, Douglas Aircraft Company, Long Beach, California, 1942.

 

Photo by Alfred T. Palmer. A member of a construction crew building a new 33,000-volt electric power line into Fort Knox, Kentucky, 1942.

Photo by Jack Delano. Sharecroppers chop cotton on rented land near White Plains, Greene County, Georgia, 1941.

Photo by John Vachon. Dr. Schreiber of San Augustine giving a typhoid inoculation at a rural school, San Augustine County, Texas, 1943.

Photo by Russell Lee. Barbeque dinner at the Pie Town, New Mexico Fair, 1940.

Photo by Alfred T. Palmer. Crane operator at the TVA’s Douglas Dam, Tennessee, 1942.

Photo by John Vachon. Workers leaving Pennsylvania shipyards, Beaumont, Texas, 1943.

Photo by Jack Delano. James Lynch, a roundhouse worker for the Chicago and North Western Railway Company , Proviso Yard, Chicago, 1942.

Photo by Jack Delano. Vermont state fair, Rutland, 1941.

Photo by Arthur Rothstein. An instructor explains the operation of a parachute to student pilots, Meacham Field, Fort Worth, Texas, 1942.

The hunt for neutrinos in the Antarctic

January 23, 2011 1 comment

By Ian Sample : The Observer, Sunday 23rd January 2011

The IceCube project has constructed a giant detector in the Antarctic ice to find subatomic particles. It could reveal where cosmic rays come from – and their cause. We meet the scientists at the south pole.

ice cube lab antarctica
The IceCube laboratory at the Amundsen-Scott South Pole Station, Antarctica.

Spencer Klein is holding a thick glass ball the size of a watermelon and it is stuffed with electronics. For 10 minutes or so, he turns it over in his hands and talks through what it does, how it works and the brutal environment it can withstand. This last point turns out to be key. Over the past half-decade, more than 5,000 of these objects have been shipped to the south pole, strung together like beads, and buried deep in the Antarctic ice sheet.

Klein is a physicist at the Lawrence Berkeley National Laboratory that sits high on the hills overlooking the University of California’s Berkeley campus and beyond to San Francisco Bay. The glass ball in his hands is a “digital optical module” (DOM), an exquisitely sensitive light detector that lies at the heart of what must be one of the most ambitious projects in the history of science. By freezing these modules into the ground around the US Amundsen-Scott south pole station, on the high plain of Antarctica, Klein and his colleagues have turned a cubic kilometre of pristine polar ice into an enormous cosmic observatory.

The $272m (£170m) IceCube instrument is not your typical telescope. Instead of collecting light from the stars, planets or other celestial objects, IceCube looks for ghostly particles called neutrinos that hurtle across space with high-energy cosmic rays. If all goes to plan, the observatory will reveal where these mysterious rays come from, and how they get to be so energetic. But that is just the start. Neutrino observatories such as IceCube will ultimately give astronomers fresh eyes with which to study the universe.

The frigid conditions at the south pole meant construction teams could only work on IceCube between November and February each year when ski-equipped planes can safely make the 1,800-mile round trip to the research station. The DOMs are designed to run on precious little power, a measly 5W each, but even so, it takes 10 planeloads of fuel to run IceCube for a single year.

ice cube telescope DOM
The final digital optical module (DOM) is prepared for the telescope.

The final piece of the observatory was put in place a week before Christmas when engineers used a hot-water drill to melt the last of 86 holes in the ice. The holes reach a depth of 2.5km (1.5 miles) and down each is lowered a string of 60 DOMs that are locked in place when the water in the hole refreezes. The pressure is so great at these depths that air bubbles are squeezed out of the ice, leaving it almost perfectly transparent.

Physicists on the IceCube project are now completing a series of checks on the latest additions to their bizarre instrument to see if the equipment survived the ordeal of being installed. Assuming it has – and only a couple of DOMs have failed in the project’s history – the instrument will soon swing into action and its search for cosmic rays will begin in earnest. “Our best calculations show that we need an instrument this size to have a good chance of seeing these cosmic ray sources,” says Klein. “Now we’re done, we have it.”

An Austrian-born scientist called Victor Hess discovered cosmic rays 100 years ago. In a series of hot-air balloon flights, Hess measured the radiation around him at altitudes up to and beyond five kilometres. As he rose up through the atmosphere, radiation levels initially fell, but then rose steeply until they were double that at sea level. Hess reasoned that radiation must somehow reach Earth from outer space.

Cosmic rays are now known to be highly energetic particles that originate in outer space and bombard our planet from all directions. Most are made up of charged particles, such as metal ions, but these are of little use to space scientists hoping to discover the origins of high-energy cosmic rays. Charged particles are deflected by magnetic fields as they race across space, making it hard, or impossible, to retrace their route and locate their cosmic birthplace.

Neutrinos are different. Produced alongside cosmic rays in outer space, neutrinos are uncharged and pass through normal matter almost entirely unhindered. Instead of being pushed and pulled around as they head towards Earth, neutrinos move in a straight line, giving scientists a good chance of tracing them directly back to their origins.

The most energetic cosmic rays seen in nature pack far more punch than any particle accelerator has ever achieved on Earth. “Some carry the same amount of energy as a well-hit tennis ball,” says Klein. “To put that in context, if you wanted to build an accelerator that energetic, with the same technology they use at the Large Hadron Collider [at Cern, in Switzerland], you would need a ring of magnets the size of Earth’s orbit around the Sun.”

Scientists have some ideas about what cosmic events might produce these extraordinarily energetic cosmic rays. They could be driven by shockwaves emanating from exploding stars, or be propelled from supermassive black holes that sit at the centres of galaxies, gobbling up stars and other objects in the vicinity. In one scenario, cosmic rays stream out when a black hole collides with a neutron star.

“The biggest puzzle about cosmic rays is that they are the highest-energy particles we can see in the universe and yet we don’t know what makes them. We have ideas, but it remains one of the outstanding mysteries of physics. What we want to find out is, how is nature doing this?” says Subir Sarkar, an astroparticle physicist at Oxford University and leader of the British team that works on IceCube.

IceCube is not the first neutrino observatory to be built by scientists, but it is by far the largest. In 1987, three neutrino detectors, constructed in caverns in Japan, America and the Caucasus, became the first to spot a few handfuls of neutrinos that sprayed out of a supernova called 1987A, which exploded in the Large Magellanic Cloud, a neighbouring galaxy to ours. In Siberia, a Russian-German team has lowered cables carrying 192 light sensors into the clear depths of Lake Baikal, turning 10 megatonnes of water into a neutrino detector. Another neutrino observatory, Antares (Astronomy with a Neutrino Telescope and Abyss Environmental Research), was built off the coast of Toulon in France in Mediterranean waters 2.5km deep. Antares complements IceCube as a northern hemisphere-based observatory.

Even with an instrument the size of IceCube, scientists expect to see only a few hundred neutrinos a day. The elusive particles reveal themselves on the rare occasions that they collide with the nuclei of oxygen atoms in the ice. When this happens, a neutrino produces a particle called a muon, a heavy relative of the electron. These muons travel faster than the speed of light in ice and release a shockwave of faint, blue light that is picked up by IceCube’s light sensors.

In a lab on the surface, signals from DOMs throughout the IceCube observatory are combined and analysed to work out the direction and energy of neutrinos that left their tracks. The scientists will look for muons that move upwards through the ice, as these are produced by neutrinos that passed through the Earth before reaching the detector. Far more downwards-moving muons are produced by charged particles in the atmosphere above the detector, but these don’t point back to the sources of cosmic rays. “We essentially use the Earth as a giant filter to absorb all the particle junk that is made locally,” says Sarkar.

Over time, the IceCube observatory will build up a “neutrino map” of the sky and with luck find hotspots in the heavens where high-energy cosmic rays appear to come from. By comparing this map with those already made by optical, infra-red, radio and x-ray telescopes, scientists may finally learn where, and even how, cosmic rays are made.

Recently, the IceCube team signed an agreement with the Nasa scientists who operate the Swift satellite that scours space for gamma ray bursts, the most violent events in the universe. Whenever Swift spots one, Nasa tells the IceCube scientists so they can immediately check that part of the sky for neutrinos.

Klein says about 90% of the urge to understand cosmic rays is intellectual, but unravelling the natural processes that propel particles around in space could be used to transform technology on the ground. “If we can learn how cosmic rays are produced, we might learn something useful for building accelerators on Earth,” he says.

One region of space that is a likely source of cosmic rays is a galaxy 10 million light years away called Centaurus A. There is little to see through an optical telescope because the galaxy is obscured by dust, but infrared images from Nasa’s Spitzer space telescope cut through the haze to show a spiral galaxy falling into a black hole at the centre of Centaurus A. When Nasa’s Chandra space telescope took x-ray images of Centaurus A, it saw huge jets erupting from the centre of the galaxy.

“Centaurus A looks different at every wavelength we’ve tried. The question is, what will it look like through a neutrino observatory?” says Sarkar. With neutrinos, scientists may finally be able to look deep into the heart of a galaxy and see what Sarkar calls the “central engine” that churns out cosmic rays.

Even as IceCube goes into action, scientists have begun work on prototype neutrino observatories that are larger still. The Arianna neutrino observatory will turn 100 cubic kilometres of the Ross ice shelf in Antarctica into a colossal neutrino detector.

Francis Halzen, IceCube’s lead scientist at the University of Wisconsin-Madison, turns to Marcel Proust when asked how neutrino observatories such as IceCube might give us new insights into the workings of the cosmos: “The real voyage of discovery consists not in seeking new landscapes but in having new eyes.”

As the short summer and its 24-hour days of sunlight come to an end at the south pole, work on IceCube has turned to upgrading computer systems and packing up the hot-water drill for long-term storage. Now the scientists face a waiting game: it is time to see if the Antarctic ice can catch their elusive quarry.

Neutrino graphic Click here for a pdf of the full graphic

Explainer: the subatomic world

Inside the atom

Schoolchildren learn that we are made of atoms, which consist of a dense nucleus made of protons and neutrons, composed of quarks, surrounded by a cloud of electrons. But more exotic particles make up our universe too.

Less familiar particles

Neutrinos are like electrons but electrically neutral. Created as a result of certain types of radioactive decay or reactions such as those that take place in stars, they are very light and travel close to the speed of light and pass through ordinary matter almost undisturbed. There are three types, or “flavours”, of neutrino: electron neutrinos, muon neutrinos and tau neutrinos. Each type also has a corresponding antiparticle, called an antineutrino.

The basic ingredients of matter

Electrons and neutrinos are classified as leptons, which don’t feel the strong or nuclear force. Together with another family of particles called quarks (themselves divided into six “flavours”), which do feel the strong force, leptons are known as fermions. These are the particles we associate with matter.

Fundamental forces

All elementary particles are either fermions or bosons (depending on their “spin”). The latter are particles we associate with fundamental forces. There are gauge bosons – gluons, W and Z bosons and photons – and two hypothetical bosons: gravitons and the Higgs boson. It is hoped that experiments at the Large Hadron Collider at Cern in Switzerland will find Higgs bosons.

Steve Bell – Cameron and the Coalition Agreement.

Steve Bell 21.01.2011

guardian.co.uk, Friday 21 January 2011

Categories: Cartoons

Steve Bell on Andrew Lansley’s NHS changes

January 23, 2011 1 comment

Steve Bell 20.01.2011

guardian.co.uk, Thursday 20 January 2011

Categories: Cartoons

Steve Bell – PM declares himself heir to Blair on NHS reforms

Steve Bell 19.01.11

Categories: Cartoons